

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

77 Batson Drive
Manchester, CT 06042
T: 860.643.9560
F: 860.646.7169
www.nebio.com

ACUTE AQUATIC TOXICITY TEST REPORT

Pease Wastewater Treatment Plant NPDES Permit: NH 0090000 Receiving Water: Piscataqua River

Test Start Date: Test Period:	8/12/16
Test Period:	August 2016

Report Prepared by:

New England Bioassay A Division of GZA GeoEnvironmental, Inc. 77 Batson Dr. Manchester, CT 06042

GZA Project Number: 05.0044856.00

Report Date:	September 7, 2016

Report Submitted to:

City of Portsmouth
Pease Wastewater Treatment Plant
135 Corporate Drive
Porstmouth, NH 03801

Sample ID:	DSN 005	
Sumple ID.	D011000	

Please contact the Lab Manager, Kim Wills, at (860) 858-3153 or kimberly.wills@gza.com if you have any questions concerning these results.

Whole Effluent Toxicity Testing Report Instruction Form

Client Name/Project: Pease WWIP	lest Date:	8/12/16
Sample ID: DSN 005		
Your results were as follows:		
Pass		
☐ Fail – Please proceed according to the instructions in your per	mit.	
□ Invalid – Retesting is still required. Retest report will be se	ent at a later da	ate under separate cover.
□ Original Test Invalid – Valid retest performed. Both test ar	nd retest results	s are attached.
☐ Retesting will be or has been performed according to the Cas of EPA-New England's species-specific, self-implementing p		
This is your case of dilution water toxicity. Protocols outlined in the attached copy of EPA-New Eng policy for alternate dilution water. The alternate dilution water should be described as follows: "synthetic laboratory water protocols, by adding specified amounts of salts into deionized receiving water." Writing this letter should help you to avoid	gland's species- ter you select for made up accor I water in order	specific, self-implementing r future tests for this specification to EPA's toxicity te to match the hardness of our
☐ Available information is insufficient to determine whether this to your permit limits. Please submit a current copy of your permit the status of future tests results and help ensure your compliance.	mit to the GZA l	Lab so that we can determin

Please complete the items on this list before reporting these results according to the instructions in the "Monitoring and Reporting" Section of your permit.

- Please complete, sign and date the upper portion of the "Whole Effluent Toxicity Test Report Certification" page which is the page directly following this page.
- Fill in the Sample Type and Sample Method (upper right) and the Permit Limits (lower left) on the GeoEnvironmental, Inc.-EPA Toxicity Test Summary Sheet(s) if they are incomplete.
- Fill in any missing information on the GZA Chain-of-Custody documents. This includes ensuring that the following information is recorded: Sampler's name and title, Facility name and address, Sample collection methods, Sample collection start and end dates and times, Types of sample, Chlorination status of samples upon shipment to GZA, Site description and Sample collection procedures.
- Monitoring results should be summarized on your monthly Discharge Monitoring Report Form.
- Signed and dated originals of this report must be submitted to the State (and Federal) Agencies specified in the "Monitoring and Reporting" section of your permit.

Questions? Please contact the Lab Manager, Kim Wills, at (860) 858-3153 or kimberly.wills@gza.com.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Permittee)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on

9/14/16 [Date]

[Authorized Signature]

Terry Desmarais, City Kny neer [Print or Type Name and Title]

Ctty of Portsmorth NH
[Print or Type the Permittee's Name]

Print or Type the NPDES Permit No.]

Since the WET test and report check is complicated, the GZA GeoEnvironmental, Inc. Aquatic Toxicity Laboratory has certified the validity of the WET test data in the section below. Please note that this does not relieve the permittee from its responsibility to sign and certify the report under 40 C.F.R. S 122.41(k).

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on

Kim Wills, Laboratory Manager

[Print or Type Name and Title]

New England Bioassay, a division of GZA [Print or Type Name of Bioassay Laboratory]

24. Telephone Contacts

If you have questions, please contact Joy Hilton, Water Technical Unit, at (617) 918-1877 or David McDonald, Ecosystem Assessment Unit, at (617) 918-8609.

SUMMARY

Client: Pease Wastewater Treatment Plant

NPDES Number: NH 0090000

Job Number: 05.0044856.00

Test Numbers: 16-1158a (*Mysidopsis bahia*)

16-1158b (Menidia beryllina)

Test Material: DSN 005 Effluent

NEB Sample ID. No.C36-2892

Sample Dates: 8/10-11/16

Test Dates: 8/12-14/16

Test Duration: 48-h Static Acute

Test Methods: U.S. Environmental Protection Agency (EPA) Methods for Measuring the Acute

Toxicity of Effluents to Freshwater and Marine Organisms, (1993, (EPA

600/4-90/027F; 2002, EPA-821-R-02-012) and EPA Region 1 (New England) Modified Methods.

Test Species: Mysid (*Mysidopsis bahia*; aka *Americamysis*):

Source: New England Bioassay Cultures Age: 5 days old

Inland silverside (Menidia beryllina):

Source: Aquatic Indicators, Inc. Age: 12 days old

Dilution Water: Piscataqua River

(NEB Sample ID. No. C36-2893)

Receiving Water: Piscataqua River

Results:

Test Species	Test Exposure Duration	LC50	A-NOEC	Permit Limit (LC50)	Meets Permit Limits?	Tests Meet Protocol Limit?	
		(% effluent)	(% effluent)	(% effluent)	(Yes/No)	(Yes/No)	
Mysid: <i>Mysidopsis bahia</i>	48 h	>100%	100%	50%	Yes	Yes	
Inland silverside: Menidia beryllina	48 h	94.0%	50%	50%	Yes	Yes	

Facility Name:	Pease WWTP	Test Start D	Date: 8/12/16	
NPDES Permit Number	r: NH0090000	Pipe Numb	er:	
Test Type	Test Species	Sample Type	Sample Method	
X Acute	Fathead Minnow	Sample Type Prechlorinated	Grab	
Chronic	_ Ceriodaphnia	X Dechlorinated	\overline{X} Composite	
_ Modified	_ Daphnia Pulex		in Lab Flowthru	
(chronic reporting	X Mysid Shrimp	Chlorinated on s		
acute values) _24hr screening	Sheepshead	Unchlorinated	_	
24hr screening	Menidia			
	Sea Urchin			
	Champia			
	_ Selenastrum			
Dilution Water	Scienastrum			
	ected at a point unstream	a of or away from the di	scharge, free from toxicity or other	r
		-		/L
	tamination; (Receiving v			th a
			rally reflect the characteristics of	lie
receiving water	r; (Surface water name:	M'11 O		
			deionized water and reagent grad	е
	leionized water combine			
or artificial sea salts	mixed with deionized w	rater;		
_ deionized water and				
_ other				
Effluent sampling date	(s): <u>8/10-11/16</u>			
Effluent concentrations	s tested (in%): $0 6.25$	<u>5 12.5 25 50 100</u>		
* Permit limit	concentration: 100%			
Was effluent salinity ac	djusted? Yes If yes,	to what value? 25 ppt		
With sea salts? Yes	Hypersaline brine solu	tion? No		
	trations tested after salir		6.25 12.5 25 50 100	
Reference Toxicant tes	t date: 8/1/16			
		 -		
	Test	Acceptability Criteria		
				
Mean Control Survival	: 100%	Mean Control Reprod	luction: N/A	
Mean Diluent Survival		Mean Diluent Reprod		
Mean Control Weight:		Mean Control Cell Co		
Mean Diluent Weight:		Mean Diluent Cell Co		
Wiedli Diluciit Weight.	14/14	Mican Dilucit Con Co	11/11	
Limits		Results		
LC50 50%	LC50	>100	0/_	
LC303070			70	
	* *	Value ±∞		
		Value100%)	
		Analysis		
		d Used Grap		
A-NOEC	A-NO)	
C-NOEC N/A	C-NO		<u>*:</u>	
	LOEC		<u> </u>	
IC25 <u>N/A</u>	IC25		•	
IC50 N/A	IC50	(====	•	

	Pease WWTP	Test Start Date:	
NI DES FEITHT Number	NII NII0090000	ripe Number.	
Test Type	Test Species	Sample Type	Sample Method
		Prechlorinated	
_		X Dechlorinated	
_			
_		Chlorinated on site	
			_
		= ,	
			
Dilution Water			
	cted at a point upstream of	or away from the discharge	, free from toxicity
_ synthetic water prepar	red using either Millipore I	Mill-Q or equivalent deioniz	ed water and
reagent grade ch	nemicals; or deionized water	er combined with mineral wa	ater;
or artificial sea salts n	nixed with deionized water	,	
X receiving water collected at a point upstream of or away from the discharge, free from toxicity or other sources of contamination; (Receiving water name: Piscataqua River			
Effluent sampling date (s):8/10-11/16		
		2.5 <u>25</u> <u>50</u> <u>100</u>	
With sea salts? Yes	Hypersaline brine solution	? <u>No</u>	<u>5 25 50 100</u>
Reference Toxicant test	date:8/3/16		
	Test Acceptabi	lity Criteria	
Mean Control Survival:	100% M	lean Control Reproduction:	N/A
		-	
Mean Control Weight:			
<u>Limits</u>		<u>Results</u>	
LC5050%	LC50	94.0%	_
	Upper Va	lue118.3%	
	Lower Va	lue74.8%	_
	Data Anal	ysis	
	Method U	sed Spearman	
A-NOEC	A-NOEC	50%	_
C-NOEC N/A	C-NOEC	******	
	LOEC		
IC25 <u>N/A</u>	IC25		
IC50 <u>N/A</u>	IC50		

39

MYSIDOPSIS BAHIA AQUATIC TOXICITY TEST REPORT **Test Reference Manual:** EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater Organisms and Marine Organisms", Fifth Edition Mysidopsis bahia Acute Toxicity Test – Method 2007.0 Test Method: **Test Type**: Acute Static Non-Renewal Saltwater Test Salinity: 25 ppt \pm 10% for all dilutions by adding ocean salts (Instant Ocean) Temperature: $25 \pm 1^{\circ}C$ Light Quality Ambient Laboratory Illumination 16 hours light, 8 hours dark Photoperiod: **Test Chamber Size:** 250 mL **Test Solution Volume:** Minimum 200 mL Age of Test Organisms: 5 days Number of Mysids Per Test Chamber: 10 Number of Replicate Test **Chambers Per Treatment: 4 Total Number of Mysids** Per Test Concentration: 40 Feeding Regime: Light feeding using concentrated Artemia nauplii while holding prior to initiating the test. Aeration: Supplemental aeration provided at test initiation **Dilution Water:** Piscataqua River water Alternate Control Water: NEB Lab Synthetic Salt Water (salinity ____25 ____ ppt) **Effluent Concentrations:** 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent **Test Duration:** 48 hours Mortality – no movement of body appendages on gentle prodding. Effect measured:

<u>Test Acceptability:</u> $\geq 90\%$ survival of test organisms in control solution Yes X No

Sampling Requirements: Samples first used within 36 hours of collection Yes X No

Sample Volume Required: Minimum 2 liters

Test Organism Source: New England Bioassay

Test Acceptability Criteria	:Mean Alternate Water Co Mean Dilution Water Co			5
Test Results:		<u>Limits</u>	Results	Status
	48-hour LC50 Upper Value Lower Value Data Analysis Method Us A-NOEC	≥ 50%	$>100\%$ $\pm \infty$ 100% Graphical 100%	Pass <u>X</u> Fail _
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Rang	Sodiu NEB (Insta New New	1/16 Im Dodecyl Si Lab Synthetic Int Ocean) England Bioas England Bioas 5.3 mg/L No	Salt Water ssay ssay
Dechlorination Procedures	: Chlorine is measured us	ing 4500 CL	-G DPD Color	rimetric Method.
X Dechlorination was not re	equired			
_ Sample was dechlorinated to Since dechlorination of the ewith sodium thiosulfate was dechlorinated sample. _ Chlorine Measurement was filtered sample.	ffluent was necessary, a that also included in the test se	niosulfate cor ries. Chlorin	itrol of diluent ne was	water spiked mg/L in a
Total Residual Chlorine wa mg/L.	s re-measured following s	ample aeratio	on, and was fo	und to be
Additional Notes or Other	Conditions Affecting the	Test:		

MENIDIA BERYLLINA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Test Method: Menidia beryllina Acute Toxicity Test – Method 2006.0

Test Type: Acute Static Non-Renewal Saltwater Test

Salinity: $25 \text{ ppt} \pm 2 \text{ ppt}$ by adding dry ocean salts (Instant Ocean)

Temperature: $25 \pm 1^{\circ}$ C

<u>Light Quality</u>: Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

Test Solution Volume: Minimum 200 mL/replicate

Age of Test Organisms: 12 days old (24 hour age range)

Number of Fish Per

Test Chamber: 10

Number of Replicate Test
Chambers Per Treatment: 4

Total Number of Organisms
Per Test Concentration: 40

Feeding Regime: Light feeding using concentrated *Artemia* nauplii while holding

prior to initiating the test.

Aeration: Supplemental aeration provided at test initiation

Dilution Water: Piscataqua River water

Alternate Control Water: NEB Lab Synthetic Salt Water (salinity ____25____ ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

Test Duration: 48 hours

Effect measured: Mortality – no movement on gentle prodding.

Test Acceptability: $\geq 90\%$ survival of test organisms in control solution Yes X No

Sampling Requirements: Samples first used within 36 hours of collection Yes X No

Sample Volume Required: Minimum 2 liters

Test Organism Source: Aquatic Indicators

Test Acceptability Criteria	:Mean Alternate Water Con Mean Dilution Water Conti			
Test Results:		<u>Limits</u>	Results	<u>Status</u>
	48-hour LC50 Upper Value Lower Value Data Analysis Method Used A-NOEC	≥ 50%	94.0% 118.3% 74.8% Spearman 50%	Pass X Fail _
Reference Toxicant Data:	<u>Date</u> : <u>Toxicant</u> : <u>Dilution Water:</u> Toxicant Source:	Sodiu NEB (Insta	8/3/16 Im Dodecyl Su Lab Synthetic Int Ocean) England Bioas	Salt Water
	Organism Source: 48-hour LC50: In Acceptable Range	8.	tic Indicators 66 mg/L X No	
Dechlorination Procedures	: Chlorine is measured using	g 4500 CL	-G DPD Color	imetric Method.
X Dechlorination was not re-	quired			
Sample was dechlorinated be Since dechlorination of the ewith sodium thiosulfate was dechlorinated sample.	ffluent was necessary, a thic	sulfate con	trol of diluent	water spiked
_Chlorine Measurement was filtered sample.	elevated due to interference	. Chlorine	was	mg/L in a
_Total Residual Chlorine wa	s re-measured following aer	ation, and	was found to b	e mg/L.
Additional Notes or Other	Conditions Affecting the T	est:		

NEW ENGLAND BIOASSAY ACUTE TOXICITY DATA FORM COVER SHEET FOR LC50 TESTS

CLIENT:	City of	Portsmouth		M.bahia TEST ID#	16-1158a			
ADDRESS:	135 Cor	porate Drive		M.beryllina TEST ID#	16-1158b			
		th, NH 03801		COC#	c36-2892/93			
SAMPLE TYPE:	Pease WW	TP - DSN 005		PROJECT #	05.0044856.00			
DILUTION WATER:	Piscat	aqua River						
Sample Date(s):	8/1	0-11/16	Received On:	8/11/1	6			
INV	<u>ERTEBRATES</u>			VERTEBRATES				
TEST SE	T UP (TECH INIT) PD		TEST SET UP (TECH INIT)	PD			
11151 012	TEST SPECIES			TEST SPECIES	Menidia beryllina			
	NEB LOTA			NEB LOT#	Ss16AI (8-10)			
	AGE			AGE	12 days			
TEST SOLUTIO	ON VOLUME (mls		TEST	SOLUTION VOLUME (mls)	700			
	NO. ORGANISMS PER TEST CHAMBER 10 NO. ORGANISMS PER TEST CHAMBER							
NO. ORGANISMS PER C				MS PER CONCENTRATION	40			
	NO. ORGANISMS PER CONTROL 40 NO. ORGANISMS PER CONTROL							
	DATE	TIME		DATE	TIME			
TEST START:	8/12/16	1730	TEST START:	8/12/16	1600			
TEST END:								
LABORATORY CONTRO	L WATER: NEB BATCH#	CRIO36-025	Salinity (ppt)	Alkalinity (mg/L CaCO ₃₎				
RESULTS OF My	sidopsis bahia	LC50 TEST	RESULTS OF	F Menidia beryllina <u>LC5</u>	0 TEST			
METHOD	LC50 (%)	95% Confidence Limits	METHOD	LC50 (%)	95% Confidence Limits			
BINOMIAL/GRAPHICAL	>100%	100%±∞	BINOMIAL/GRAPHICAL	94.0%	74.8% - 118.3%			
PROBIT			PROBIT					
SPEARMAN KARBER			SPEARMAN KARBER		SAME VENDERS			
NOAEL	100%		NOAEL	50%	1.00			
NOEC: NO OBSERVAE	BLE EFFECT C	CONCENTRATION						
Comments:								
REVIEWD BY:		1/1	1/15	DATE:	9/1/16			

NEB Test #:	16-1158a	Test Organism:	My	Mysidopsis bahia	
Project #:	05.0044856,00	Organism Age:		5	days
Facility Name:	Pease WWTP	Test Duration:	48	(hours)	
Date Sampled:	8/10-11/16	Beginning Date:	8/12/16	_Time:	1730
Date Received:	8/11/16	Dilution Water S	ource:	Piscataq	ua River
Sample ID:	DSN 005	Salinity:	25		ppt

Effluent Conc.	8	umber o Survivin	g		issolve Oxyger	_	Te	mperati	ure		pH (su)			Salinity (ppt)	•
%	-	rganisn			(mg/L)	O.D.	DD	00	00		00	OD	- DD	00	0.7
Initials	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.2	7.4	6,9	24.7	24,3	24.3	8.0	8.0	8.0	25	26	26
Control B	10	10	10		7.2	6.9		24.6	24.3		8.0	8.1		25	26
Control C	10	10	10		7.2	7.0		24.6	24.4		8.0	8.1		26	26
Control D	10	10	10		7.1	7.0		24.4	24.4		8.1	8.0		26	26
Diluent A	10	10	10	7.3	7.2	6.2	24.7	24.5	24.4	7.8	7.9	7.8	25	26	26
Diluent B	10	10	10		7.1	6.1		24.5	24.4		7.9	7.6		26	26
Diluent C	10	10	10		7.1	6.2		24.4	24.4		7.8	7.8		26	26
Diluent D	10	10	10		7.1	6.6		24.4	24.3		7.8	7.9		26	27
6.25 A	10	10	10	7.3	7.1	7.1	24.7	24.4	24.3	7.7	7.9	8.0	25	25	26
6.25 B	10	10	10		7.0	7.0		24.3	24.3		8.0	8.0		25	26
6.25 C	10	10	10		7.0	7.0		24.2	24.4		7.9	8.0		26	26
6.25 D	10	10	10		7.0	6.9		24.1	24.3		8.0	8.0		26	27
12.5 A	10	10	10	7.2	7.1	6.8	24.7	24.4	24.3	7.7	8.0	8.1	24	25	26
12.5 B	10	10	10		7.2	6.9		24.2	24.3		8.0	8.1		26	27
12.5 C	10	10	10		7.1	7.0		24.4	24.4		8.0	8.1		25	25
12.5 D	10	10	10		7.0	6.8		24.1	24.2		8.0	8.1		27	30
25 A	10	10	10	7.2	7.0	6.9	24.7	24.3	24.2	7.7	8.2	8.2	24	25	26
25 B	10	10	10		7.0	6.9		24.3	24.3		8.2	8.2		25	26
25 C	10	10	10		7.0	6.8		24.2	24.2		8.2	8.3		25	26
25 D	10	10	10		7.1	6.9		24.3	24.2		8.2	8.3		26	27

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEB Test #:	16-1158a	Test Organism:	My	sidopsis ba	hia
Project #:	05.0044856.00	Organism Age:		5	days
Facility Name:	Pease WWTP	Test Duration:	48	_(hours)	
Date Sampled:	8/10-11/16	Beginning Date:	8/12/16	Time:	1730
Date Received:	8/11/16	Dilution Water S	Source:	Piscatagu	a River
Sample ID:	DSN 005	Salinity:	25	р	pt

Effluent Conc. %		umber Survivin Irganisn	g	Oxygen (°C) (su) (p (mg/L)			Oxygen (°C) (su) (ppt)						Oxygen (°C) (su) (ppt)		pH (su)		
Initials	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ		
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48		
50 A	10	10	10	7.1	7.0	6.9	24.7	24.3	24.2	7.7	8.3	8.4	24	25	26		
50 B	10	10	10		7.0	7.0		24.5	24.3		8.3	8.4		25	25		
50 C	10	10	10		7.0	6.9		24.4	24.4		8.3	8.4		24	25		
50 D	10	10	10		7.0	6.9		24.5	24.3		8.3	8.4		25	25		
100 A	10	10	10	7.0	7.3	7.0	24.7	24.4	24.2	7.6	8.5	8.6	23	24	24		
100 B	10	10	10		6.9	6.8		24.4	24.3		8.5	8.6		24	24		
100 C	10	10	10		6.9	6.8		24.3	24.4		8.5	8.6		24	24		
100 D	10	10	10		6.8	6.7		24.2	24.4		8.5	8.6		24	24		
	<u> </u>																
				-					_				_				
	-								-				-				

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEB Test #: 16-1158b		Test Organism:		Menidia beryllina				
Project #:	05.0044856.00	Organism Age: _		12	days			
Facility Name:	Pease WWTP	Test Duration:	48	(hours)				
Date Sampled:	8/10-11/16	Beginning Date:	8/12/16	Time:	1600			
Date Received:	8/11/16	Dilution Water So	urce:	Piscataqua	a River			
Sample ID:	DSN 005	Salinity:	25	DI	ot			

Effluent Conc. %	8	umber o Survivin erganisn	g	_	issolve Oxyger (mg/L)		Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	1
Initials	PD	СВ	СВ	PD	CB	CB	PD	СВ	СВ	PD	СВ	СВ	PD	СВ	СВ
TEMPS SERVE	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.2	7.2	7.2	24.7	24.8	24.4	8.0	8.1	8.0	25	25	25
Control B	10	10	10		7.2	7.2		24.8	24.6		8.0	8.0		25	25
Control C	10	10	10		7.1	7.2		24.8	24.8		8.1	8.1		25	25
Control D	10	10	10		7.2	7.2		24.7	24.7		8.1	8.1		25	25
Diluent A	10	10	10	7.3	7.2	7.2	24.7	24.8	24.6	7.8	8.0	8.0	25	25	25
Diluent B	10	9	9		7.1	7.2		24.7	24.5		7.9	8.0		25	25
Diluent C	10	10	10		7.1	7.2		24.6	24.6		8.0	8.0		25	25
Diluent D	10	10	10		7.2	7.2		24.6	24.6		8.0	8.0		25	25
6.25 A	10	10	10	7,3	7.2	7.2	24.7	24.7	24.6	7.7	8.1	8.1	25	25	25
6.25 B	10	10	10		7.2	7.1		24.7	24.6		8.1	8.1		25	25
6.25 C	10	10	10		7.2	7.2	ĺ	24.6	24.6		8.1	8.1		25	25
6.25 D	10	9	9		7.2	7.2		24.7	24.6		8.1	8.1		25	25
12.5 A	10	10	10	7.2	6.1	5.9	24.7	24.7	24.6	7.7	7.8	7.9	24	25	25
12.5 B	10	10	10		6.8	6.4		24.4	24.4		8.2	8.2		25	25
12.5 C	10	10	10		7.2	7.1		24.4	24.5		8.2	8.2		25	25
12.5 D	10	10	10		7.2	7.2		24.4	24.5		8.2	8.2		25	25
25 A	10	10	9	7.2	7.2	7.2	24.7	24.6	24.3	7.7	8.2	8.3	24	25	25
25 B	10	10	10		7.1	7.2		24.5	24.4		8.3	8.3		25	25
25 C	10	10	10		6.1	7.1		24.6	24.4		7.8	8.3		25	25
25 D	10	10	10		7.0	7.1		24.5	24.2		8.2	8.3		25	25

LC50	Confidence Interval	A-NOEC	Computational Method
94.0%	74.8% - 118.3%	50%	Spearman

NEB Test #:	16-1158b	Test Organism:	Me	Menidia beryllina		
Project #:	05.0044856.00	Organism Age:		12	days	
Facility Name:	Pease WWTP	Test Duration:	48	_(hours)		
Date Sampled:	8/10-11/16	Beginning Date:	8/12/16	_Time:	1600	
Date Received:	8/11/16	Dilution Water S	ource:	Piscataqua	River	
Sample ID:	DSN 005	Salinity:	25	рр	ot	

Effluent Conc. %	5	Survivin	imber of urviving ganisms		Dissolved Temperature pH Salinity Oxygen (°C) (su) (ppt) (mg/L)				Oxygen (mg/L)						
Initials	PD	СВ	СВ	PD	СВ	СВ	PD	CB	СВ	PD	CB	СВ	PD	СВ	СВ
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	10	8	7.1	7.3	7.1	24.7	24.4	24.5	7.7	8.4	8.4	24	24	24
50 B	10	10	10		7.2	7.1		24.4	24.4		8.4	8.4		24	24
50 C	10	10	9		7.1	7.0		24.5	24.5		8.4	8.4		24	24
50 D	10	9	8		7.1	7.0		24.4	24.4		8.3	8.3		24	25
100 A	10	8	1	7.0	7.2	7.0	24.7	24.6	24.5	7.6	8.4	8.5	23	23	23
100 B	10	8	3		7.1	7.0		24.6	24.5		8.5	8.6		23	23
100 C	10	10	5		7.1	7.0		24.6	24.5		8.3	8.5		23	23
100 D	10	10	9		7.0	6.9		24.6	24.4		8.3	8.5		23	24

LC50	Confidence Interval	A-NOEC	Computational Method
94.0%	74.8% - 118.3%	50%	Spearman

CETIS Analytical Report

Report Date:

06 Sep-16 11:34 (p 1 of 1)

Test Code:

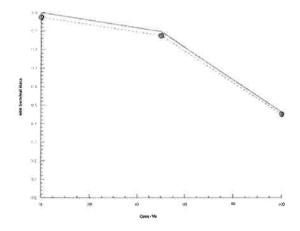
16-1158b | 06-0517-1350

Inland Silvers	ide 96-h Acute Surv	ival Test		New England Bioassa			
Analysis ID: Analyzed:	18-4907-1048 06 Sep-16 11:34	Endpoint: Analysis:	48h Survival Rate Trimmed Spearman-Kärber	CETIS Ver Official Re			
Batch ID: Start Date: Ending Date: Duration:	19-1377-7645 12 Aug-16 16:00 14 Aug-16 15:00 47h	Test Type: Protocol: Species: Source:	Survival (48h) EPA/821/R-02-012 (2002) Menidia beryllina Aquatic Indicators, CA	Analyst: Diluent: Brine: Age:	Receiving Water		
Sample ID: Sample Date: Receipt Date: Sample Age:	11 Aug-16	Code: Material: Source: Station:	73C7B17C POTW Effluent Pease WWTP (NH0090000)	Client: Project:	Partsmouth		

Trimmed	Spearman-Kärber	Estimates
---------	-----------------	-----------

Threshold Option	Threshold	Trim	Mu	Sigma	LC50	95% LCL	95% UCL
Control Threshold	0.025	46.15%	1.973	0.04972	94.07	74.82	118.3

48h Survival Rate Summary				Calculated Variate(A/B)							
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	D	4	0.9750	0.9000	1.0000	0.0250	0.0500	5.13%	0.0%	39	40
50		4	0.8750	0.8000	1.0000	0.0479	0.0957	10.94%	10.26%	35	40
100		4	0.4500	0.1000	0.9000	0.1708	0.3416	75.90%	53.85%	18	40


48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	0.9000	1.0000	1.0000
50		0.8000	1.0000	0.9000	0.8000
100		0.1000	0.3000	0.5000	0.9000

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	9/10	10/10	10/10
50		8/10	10/10	9/10	8/10
100		1/10	3/10	5/10	9/10

Graphics

CETIS Analytical Report

Report Date:

06 Sep-16 11:31 (p 1 of 2)

Test Code:

16-1158b | 06-0517-1350

mana om orde	96-h Acute S	urvival Te	st						N	ew England	d Bioassa
	-7558-4805			8h Survival Ra		Tooling		IS Version		.9.2	
	Sep-16 11:31			lonparametric-	-Control vs	reatments		cial Results	s: Yes		
	1377-7645	· · · · · · · · · · · · · · · · · · ·			040 (0000		Ana	-		_	
	Aug-16 16:00	-			012 (2002)	Dilu		ceiving Wate	er	
•	Aug-16 15:00			lenidia beryllin			Brin				
Duration: 47h				quatic Indicate	ors, CA		Age				
- · · • · · ·	4246-6940	Cod		3C7B17C			Clie		rtsmouth		
Sample Date: 11 /				OTW Effluent		00)	Proj	ect:			
Receipt Date: 11	-			ease WWTP	(เทเบบอบบ	JU)					
Sample Age: 40h			tion:								
Data Transform		Alt Hyp					NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected	l) 	C > T					100	> 100	n/a	1	21.55%
Steel Many-One R	Rank Sum Tes	st .									
Control vs	Conc-%		Test Sta			F P-Type	P-Value	Decision			
Dilution Water	6.25		18	10	2 6		0.8333	•	ificant Effec		
	12.5		20	10	1 6		0.9516	_	ificant Effec		
	25		18	10	2 6		0.8333		ificant Effec		
	50		13	10	2 6	, ,	0,2311	_	ificant Effec		
	100		10.5	10	1 6	i Asymp	0.0586	Non-Sigr	nificant Effec	<u> </u>	
ANOVA Table											
Source	Sum Squai	res	Mean S		DF	F Stat	P-Value	Decision			
Between	1.35026		0.27005		5	8.315	3.2E-04	Significa	nt Effect		
Error	0.584628		0.03247	94	18						
Total	1.93489				23						
Distributional Tes	its										
Attribute	Test					t Critical	P-Value	Decision	` 		
Variances Levene Equality of Variance T		_			4.106	4.248	0.0116	Equal Va			
				e Test	3.311	4.248	0.0270	Equal Va			
Variances			Distribution Shapiro-Wilk W Normality Test					Non-Norr	mal Distribut	on	
/ariances		k W Norm	ality lest		0.8031	0.884	3.3E-04	14011-14011			
Variances Distribution 48h Survival Rate	Shapiro-Wil										
Variances Distribution ISh Survival Rate Conc-%	Shapiro-Wil Summary Code	Count	Mean	95% LCL	95% UC	L Median	Min	Max	Std Err	CV%	
Variances Distribution 48h Survival Rate Conc-%	Shapiro-Will Summary Code D	Count	Mean 0.9750	0.8954	95% UC	L Median 1,0000	Min 0.9000	Max 1.0000	0.0250	5.13%	%Effect
Variances Distribution 48h Survival Rate Conc-% 0 5.25	Shapiro-Will Summary Code D	Count 4 4	Mean 0.9750 0.9750	0.8954 0.8954	95% UC 1.0000 1.0000	L Median 1,0000 1,0000	Min 0.9000 0.9000	Max 1.0000 1,0000	0.0250 0.0250	5.13% 5.13%	0.00% 0.00%
Variances Distribution 48h Survival Rate Conc-% 3.25 12.5	Shapiro-Wil Summary Code D	Count 4 4 4	Mean 0.9750 0.9750 1.0000	0.8954 0.8954 1.0000	95% UC 1.0000 1.0000 1.0000	L Median 1,0000 1,0000 1,0000	Min 0.9000 0.9000 1.0000	Max 1.0000 1.0000 1.0000	0.0250 0.0250 0.0000	5.13% 5.13% 0.00%	0.00% 0.00% -2.56%
Variances Distribution 48h Survival Rate Conc-% 0 5.25 12.5	Shapiro-Wil Summary Code D	Count 4 4 4 4 4	Mean 0.9750 0.9750 1.0000 0.9750	0.8954 0.8954 1.0000 0.8954	95% UC 1.0000 1.0000 1.0000 1.0000	L Median 1.0000 1.0000 1.0000 1.0000 1.0000	Min 0.9000 0.9000 1.0000 0.9000	Max 1.0000 1,0000 1.0000 1.0000	0.0250 0.0250 0.0000 0.0250	5.13% 5.13% 0.00% 5.13%	0.00% 0.00% -2.56% 0.00%
Variances Distribution 48h Survival Rate Conc-% 0 3.25 12.5 25 60	Shapiro-Wil Summary Code D	Count 4 4 4 4 4 4 4	Mean 0.9750 0.9750 1.0000 0.9750 0.8750	0.8954 0.8954 1.0000 0.8954 0.7227	95% UC 1.0000 1.0000 1.0000 1.0000 1.0000	L Median 1.0000 1.0000 1.0000 1.0000 0.8500	Min 0.9000 0.9000 1.0000 0.9000 0.8000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	0.0250 0.0250 0.0000 0.0250 0.0479	5.13% 5.13% 0.00% 5.13% 10.94%	0.00% 0.00% -2.56% 0.00% 10.26%
Variances Distribution 48h Survival Rate Conc-% 0 3.25 12.5 25 60 100	Shapiro-Wil Summary Code D	Count 4 4 4 4 4 4 4 4	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500	0.8954 0.8954 1.0000 0.8954	95% UC 1.0000 1.0000 1.0000 1.0000	L Median 1.0000 1.0000 1.0000 1.0000 1.0000	Min 0.9000 0.9000 1.0000 0.9000	Max 1.0000 1,0000 1.0000 1.0000	0.0250 0.0250 0.0000 0.0250	5.13% 5.13% 0.00% 5.13%	0.00% 0.00% -2.56% 0.00% 10.26%
Variances Distribution 48h Survival Rate Conc-% 3.25 12.5 25 60 100 Angular (Correcte	Shapiro-Wil Summary Code D	Count 4 4 4 4 4 4 4 4 4 6 Med Summ	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500	0.8954 0.8954 1.0000 0.8954 0.7227 0.0000	95% UCI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9935	1.0000 1.0000 1.0000 1.0000 1.0000 0.8500 0.4000	Min 0.9000 0.9000 1.0000 0.9000 0.8000 0.1000	Max 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000	0.0250 0.0250 0.0000 0.0250 0.0479 0.1708	5.13% 5.13% 0.00% 5.13% 10.94% 75.90%	0.00% 0.00% -2.56% 0.00% 10.26% 53.85%
Variances Distribution 48h Survival Rate Conc-% 5.25 12.5 25 60 100 Angular (Correcte Conc-%	Shapiro-Wil Summary Code D d) Transform Code	Count 4 4 4 4 4 4 4 Count	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500 nary Mean	0.8954 0.8954 1.0000 0.8954 0.7227 0.0000	95% UC 1.0000 1.0000 1.0000 1.0000 0.9935	1.0000 1.0000 1.0000 1.0000 0.8500 0.4000	Min 0.9000 0.9000 1.0000 0.9000 0.8000 0.1000	Max 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000	0.0250 0.0250 0.0000 0.0250 0.0479 0.1708	5.13% 5.13% 0.00% 5.13% 10.94% 75.90%	0.00% 0.00% -2.56% 0.00% 10.26% 53.85%
Variances Distribution 18h Survival Rate Conc-% 3.25 12.5 50 100 Angular (Correcte Conc-%	Shapiro-Wil Summary Code D d) Transform Code D	Count 4 4 4 4 4 4 Count 4	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500 ary Mean 1.371	0.8954 0.8954 1.0000 0.8954 0.7227 0.0000 95% LCL	95% UCI 1.0000 1.0000 1.0000 1.0000 0.9935 95% UCI 1.501	1.0000 1.0000 1.0000 1.0000 0.8500 0.4000 L Median	Min 0.9000 0.9000 1.0000 0.9000 0.8000 0.1000 Min 1.249	Max 1.0000 1.0000 1.0000 1.0000 0.9000 Max 1.412	0.0250 0.0250 0.0000 0.0250 0.0479 0.1708 Std Err	5.13% 5.13% 0.00% 5.13% 10.94% 75.90%	0.00% 0.00% -2.56% 0.00% 10.26% 53.85% %Effect 0.00%
Variances Distribution 18h Survival Rate Conc-% 3.25 12.5 5.0 Angular (Correcte Conc-% 3.25	Shapiro-Wil Summary Code D d) Transform Code D	Count 4 4 4 4 4 4 Count 4 4 4	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500 ary Mean 1.371 1.371	0.8954 0.8954 1.0000 0.8954 0.7227 0.0000 95% LCL 1.242 1.242	95% UCI 1.0000 1.0000 1.0000 1.0000 0.9935 95% UCI 1.501 1.501	1.0000 1.0000 1.0000 1.0000 0.8500 0.4000 L Median 1.412 1.412	Min 0.9000 0.9000 1.0000 0.9000 0.8000 0.1000 Min 1.249 1.249	Max 1.0000 1.0000 1.0000 1.0000 0.9000 Max 1.412 1.412	0.0250 0.0250 0.0000 0.0250 0.0479 0.1708 Std Err 0.04074	5.13% 5.13% 0.00% 5.13% 10.94% 75.90% CV% 5.94% 5.94%	0.00% 0.00% -2.56% 0.00% 10.26% 53.85% %Effect 0.00% 0.00%
Variances Distribution 48h Survival Rate Conc-% 0 6.25 12.5 60 100 Angular (Correcte Conc-% 0 6.25 12.5	Shapiro-Wil Summary Code D d) Transform Code D	Count 4 4 4 4 4 Count 4 4 4 4	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500 ary Mean 1.371 1.371 1.412	0.8954 0.8954 1.0000 0.8954 0.7227 0.0000 95% LCL 1.242 1.242 1.412	95% UCI 1.0000 1.0000 1.0000 1.0000 0.9935 95% UCI 1.501 1.501 1.412	1.0000 1.0000 1.0000 1.0000 0.8500 0.4000 L Median 1.412 1.412 1.412	Min 0.9000 0.9000 1.0000 0.9000 0.8000 0.1000 Min 1.249 1.249 1.412	Max 1.0000 1.0000 1.0000 1.0000 0.9000 Max 1.412 1.412 1.412	0.0250 0.0250 0.0000 0.0250 0.0479 0.1708 Std Err 0.04074 0.04074	5.13% 5.13% 0.00% 5.13% 10.94% 75.90% CV% 5.94% 5.94% 0.00%	0.00% 0.00% -2.56% 0.00% 10.26% 53.85% %Effec 0.00% 0.00% -2.97%
Variances	Shapiro-Wil Summary Code D d) Transform Code D	Count 4 4 4 4 4 4 Count 4 4 4	Mean 0.9750 0.9750 1.0000 0.9750 0.8750 0.4500 ary Mean 1.371 1.371	0.8954 0.8954 1.0000 0.8954 0.7227 0.0000 95% LCL 1.242 1.242	95% UCI 1.0000 1.0000 1.0000 1.0000 0.9935 95% UCI 1.501 1.501	1.0000 1.0000 1.0000 1.0000 0.8500 0.4000 L Median 1.412 1.412	Min 0.9000 0.9000 1.0000 0.9000 0.8000 0.1000 Min 1.249 1.249	Max 1.0000 1.0000 1.0000 1.0000 0.9000 Max 1.412 1.412	0.0250 0.0250 0.0000 0.0250 0.0479 0.1708 Std Err 0.04074	5.13% 5.13% 0.00% 5.13% 10.94% 75.90% CV% 5.94% 5.94%	0.00% 0.00% -2.56% 0.00% 10.26% 53.85% %Effect 0.00% 0.00%

CETIS Analytical Report

Inland Silverside 96-h Acute Survival Test

Report Date:

06 Sep-16 11:31 (p 2 of 2) 16-1158b | 06-0517-1350

Test Code:

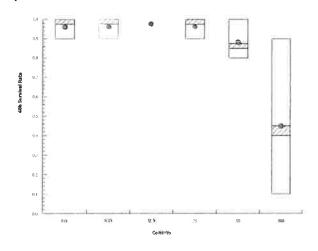
New England Bioassay

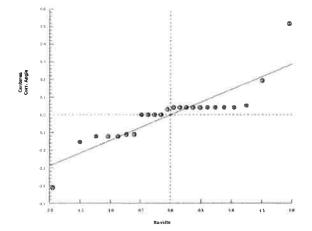
Analysis ID: 03-7558-4805 Endpoint: 48h Survival Rate CETIS Vers	ion: CETISv1.9.2
--	------------------

Analyzea:	06 Sep-16 11:31	Analysis:	Nonparametric-Control vs. Frea	itments Official Results:	res

48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	0.9000	1.0000	1.0000
6.25		1.0000	1.0000	1,0000	0.9000
12.5		1.0000	1.0000	1,0000	1.0000
25		0.9000	1.0000	1,0000	1.0000
50		0.8000	1.0000	0.9000	0.8000
100		0.1000	0.3000	0.5000	0.9000


Angular (Corrected) Transformed Detail


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1,412	1.249	1.412	1.412
6.25		1.412	1.412	1.412	1.249
12.5		1.412	1,412	1,412	1.412
25		1.249	1.412	1.412	1.412
50		1.107	1.412	1.249	1.107
100		0.3218	0.5796	0.7854	1.249

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	9/10	10/10	10/10
6.25		10/10	10/10	10/10	9/10
12.5		10/10	10/10	10/10	10/10
25		9/10	10/10	10/10	10/10
50		8/10	10/10	9/10	8/10
100		1/10	3/10	5/10	9/10

Graphics

INITIAL CHEMISTRY INFORMATION

 CLIENT:
 Pease WWTP

 PROJECT #
 05.0044856.00

RECIEPT DATE	8/1	1/16		
SAMPLE	Effluent	Receiving Water		
COC#	C36-2892	C36-2893		
Temperature (°C)	3.6	3.6		
Dissolved Oxygen (mg/L)	4.8	4.7		
pH (standard units)	7.6	7.5		
Conductivity (µmhos/cm)	4,109	48,490		
Salinity (ppt)	2	32		
Hardness (as mg/L CaCO3)	184	5900		
Alkalinity (as mg/L CaCO3)	440	100		
TRC - DPD (mg/L)	0.005	0.002		
INITIALS	СВ	СВ		

Additional notes:

River: 15.625L of river was brought up to 20L using D.I. water

in order to bring salinity down to 25ppt

Eff: 238.1g of I.O. added to 9 L of effluent to bring salinity up to 23ppt

NEW ENGLAND BIOAS	SAY - CHAIN-OF-CUSTODY
EFFLUENT	RECEIVING WATER
Sampler: Doug Follon	Sampler: Tim BabKaTK
Title: WWTP Openedar	Title: CPO
Facility: Pease WWTP	Facility: Pease WWTP
Sampling Method: X Composite	Sampling Method: X Grab
Sample ID: DSN 005	Sample ID: Piscataqua River
Start Date: 8-10-14 Time: 8:10	Date Collected: S-10-16
End Date: 8:11-16 Time: 8:10	Time Collected: 6:15 PM
Sampling Method: X Grab (for pH, TRC, & TCE X)
Date Collected: 8-11-16	
Time Collected: 8:16	
Sample Type: Prechlorinated	
Dechlorinated Unchlorinated	
Chlorinated	
Effluent Sampling Location and Procedures: Eff/	ent sampler, end of contac
Receiving Water Sampling Location and Procedures: Pis	catagua River - upstream
Requested Analysis: X Acute Definitive LC50 Test	
Samp	le Shipment
Method of Shipment: NEB Courier	
Relinquished By: Klary Fullon Da	te: 8-11-14 Time: 9:30
Received By: Mie Holle Da	te: 8 -11-16 Time: 893 D
Relinquished By: Me Hoof Da	te: 8-11-6 Time: 113
Received By: Colerts 1 1 Day Da	te: 8/11/16 Time: 1235
Optiona	1 Information
Purchase Order # to reference on invoice:	
FOR NE	B USE ONLY
* Please return all ice packs NEB has provided to insur	e accurate temperature upon receipt to the NEB laboratory.
Temperature of Effluent Upon Receipt at Lab: 3.6 °C	Temperature of Receiving Water Upon Receipt at Lab: 3 6 °C
Effluent COC# (36-2892	Receiving Water COC# <u>C36-2893</u>

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY 77 BATSON DRIVE MANCHESTER, CT 06042

Thursday, August 18, 2016

Attn: Ms. Kim Wills New England Bioassay a Division of GZA GeoEnvironmental 77 Batson Drive Manchester, CT 06040

Project ID: PEASE WWTP Sample ID#s: BN90827 - BN90829

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 18, 2016

FOR:

Attn: Ms. Kim Wills

New England Bioassay

a Division of GZA GeoEnvironmental

77 Batson Drive

Manchester, CT 06040

Sample Information

WASTE WATER

Custody Information

<u>Date</u> **Time**

Matrix:

Collected by:

08/11/16

Location Code:

NEB

Received by:

LK

08/11/16

14:54

Rush Request:

Analyzed by:

see "By" below

SDG ID: GBN90827

P.O.#:

21800

Standard

aboratory Data

Phoenix ID: BN90827

Project ID:

PEASE WWTP

Client ID:

C36-2892 DSN 005 COMP

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Aluminum	0.035	0.010	mg/L	1	08/13/16	LK	E200.7	
Cadmium	< 0.001	0.001	mg/L	1	08/13/16	LK	E200.7	
Chromium	0.002	0.001	mg/L	1	08/13/16	LK	E200.7	
Copper	0.006	0.002	mg/L	1	08/13/16	LK	E200.7	
Nickel	< 0.001	0.001	mg/L	1	08/13/16	LK	E200.7	
Lead	0.0003	0.0003	mg/L	1	08/15/16	RS	SM3113B	
Zinc	0.055	0.002	mg/L	1	08/13/16	LK	E200.7	
Alkalinity-CaCO3	465	5.00	mg/L	1	08/12/16	RR/EG	SM2320B-97	
Ammonia as Nitrogen	4,05	0.05	mg/L	1	08/17/16	WHM	E350.1	
Salinity	2,2	0.5	ppt	-1	08/11/16	TC	SM2520B-10	1
Tot. Org. Carbon	35	2.5	mg/L	5	08/17/16	RR/EG	SM5310C/E415.1-00	1
Total Suspended Solids	< 5.0	5.0	mg/L	1	08/12/16	AS/KH	SM2540D-97	
Total Solids	2500	20	mg/L	2	08/15/16	AS/KH	SM2540B-97	
Total Metals Digestion	Completed				08/11/16	AG		

Page 1 of 4 Ver 1 Project ID: PEASE WWTP

Client ID: C36-2892 DSN 005 COMP

Phoenix I.D.: BN90827

RL/

Parameter

Result PQL

Units

Dilution Date/Time

Bv F

Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 18, 2016

Reviewed and Released by: Deb Lawrie, Project Manager

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 18, 2016

FOR: Attn: Ms. Kim Wills

New England Bioassay

a Division of GZA GeoEnvironmental

77 Batson Drive

Manchester, CT 06040

Sample Information

WASTE WATER

NEB

Location Code: Standard

Rush Request: P.O.#:

Matrix:

21800

Custody Information

Collected by: Received by:

LK Analyzed by:

see "By" below

.aboratory Data

SDG ID: GBN90827

Time

8:10

14:54

Phoenix ID: BN90828

Date

08/11/16

08/11/16

Project ID:

PEASE WWTP DSN 005 GRAB

Client ID:

Parameter		Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Chlorine Residual		< 0.02	0.02	mg/L	1	08/11/16 17:42	0	SM4500CLG-97	1
pН		7.87	0.10	pH Units	1	08/12/16 09:03	RR/EG	SM4500-H B-00	1
Trichloroethylene	$\tilde{\chi}$	ND	1.0	ug/L	1	08/12/16	мн	E624	

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 18, 2016

Reviewed and Released by: Deb Lawrie, Project Manager

Page 3 of 4

Ver 1

587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 18, 2016

FOR:

Attn: Ms. Kim Wills

New England Bioassay

a Division of GZA GeoEnvironmental

77 Batson Drive

Manchester, CT 06040

Sample	Inf	orma	tion
			-

WASTE WATER

Collected by:

Date 08/10/16 <u>Time</u> 18:15

Location Code:

NEB

Received by: Analyzed by:

LK see "By" below 08/11/16 14:54

Rush Request: P.O.#:

Matrix:

Standard 21800

Laboratory Data

Custody Information

SDG ID: GBN90827

Phoenix ID: BN90829

Project ID:

PEASE WWTP

Client ID:

C36-2893 PISCATAQUA RIVER

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Alkalinity-CaCO3	111	5.00	mg/L	1	08/12/16	RR/EG	SM2320B-97	
Chlorine Residual	< 0.02	0.02	mg/L	1	08/11/16 17:44	0	SM4500CLG-97	1
Ammonia as Nitrogen	0.15	0.05	mg/L	1	08/17/16	WHM	E350.1	
pH	7.90	0.10	pH Units	1	08/12/16 09:25	RR/EG	SM4500-H B-00	1
Salinity	33	0.5	ppt	1	08/11/16	TC	SM2520B-10	1
Tot, Org. Carbon	1.9	0.50	mg/L	1	08/16/16	RR/EG	SM5310C/E415.1-00	1
Total Suspended Solids	28	5.0	mg/L	1	08/12/16	AS/KH	SM2540D-97	
Total Solids	29000	100	mg/L	10	08/12/16	AS/KH	SM2540B-97	

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 18, 2016

Reviewed and Released by: Deb Lawrie, Project Manager

Page 4 of 4

Ver 1

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 18, 2016

QA/QC Data

SDG I.D.: GBN90827

Parameter	Blank	BIK RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits
QA/QC Batch 355306 (mg/L), C	QC Samp	ole No: E	BN90377	(BN908	27)								
Lead (Furnace) - Water	BRL	0.001	0.016	0.018	11.8	95.8			97.5			85 - 115	20
QA/QC Batch 355455 (mg/L), C	C Samı	ole No: E	BN90649	(BN908	27)								
ICP Metals - Aqueous													
Aluminum	BRL	0.010	1.16	1.23	5.90	95.8			116			75 - 125	20
Cadmium	BRL	0.001	<0.001	<0.001	NÇ	99.5			97.3			75 - 125	20
Chromium	BRL	0.001	0.003	0.003	NC	97.9			97.4			75 - 125	20
Copper	BRL	0.005	0.021	0.021	NC	99.2			99.9			75 - 125	20
Nickel	BRL	0.001	0.001	0.002	NC	99.7			98.1			75 - 125	20
Zínc	BRL	0.002	0.032	0.034	6.10	98.5			99.4			75 - 125	20

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 18, 2016

QA/QC Data

SDG I.D.; GBN90827

Parameter	Blank	Bik RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 355511 (mg/L), C	C Samp	ole No:	BN89919	(BN908	27, BN	90829)							
Total Solids	BRL	10	320	340	6.10	95.0						85 - 115	20
QA/QC Batch 355439 (mg/L), C Chlorine Residual	C Samp	ole No: 0.02	BN90586 <0.02	(BN908 <0.02	28, BN NC	90829) 112							
QA/QC Batch 355509 (mg/L), C	C Samp	ole No:	BN90751	(BN908	27, BN	90829)							
Total Suspended Solids	BRL	5.0	7.5	<5.0	NC	87.0						85 - 115	20
QA/QC Batch 355528 (mg/L), Q Alkalinity-CaCO3	C Samp	ile No: 5.00	BN90783 165	(BN908 166	27) 0.60	107						85 - 115	20
QA/QC Batch 355524 (pH), QC pH	Sample	No: B	N90783 (E	3N90828 7.95	3)	98.1						85 - 115	20
QA/QC Batch 355529 (mg/L), Q	C Samp	le No:	BN90829	(BN908	29)								
Alkalinity-CaCO3	BRL	5.00	111	111	0	107						85 - 115	20
QA/QC Batch 355525 (pH), QC	Sample	No: B	N90829 (E	N90829	9)								
рН			7.90	7.85	0.60	98.1						85 - 115	20
QA/QC Batch 355832 (mg/L), Q	C Samp	le No:	BN91237	(BN908	29)								
Total Organic Carbon	BRL	1.0	<1.0	<1.0	NC	94.0			92.0			85 - 115	20
QA/QC Batch 355820 (mg/L), Q	C Samp	le No:	BN91257	(BN908	27, BN	90829)							
Ammonia as Nitrogen	BRL	0.05	0.06	0.06	NC	98.0			103			85 - 115	20
QA/QC Batch 355926 (mg/L), QC Sample No: BN92993 (BN90827)													
Tot, Org. Carbon	BRL	0.5		16		95.0			102			85 - 115	20

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 545-1102 Fax (860) 645-0823

QA/QC Report

August 18, 2016

QA/QC Data

SDG I.D.: GBN90827

Parameter	Blank	Bik RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 355556	(ug/L), QC Sample	e No: BN90922 (E	3N90828)							
Volatiles - Waste \	Water									
Trichloroethene	ND	1.0	98	89	9.6				70 - 130	30
Comment:										
A LCS and LCS Duplica	ste were performed i	nstead of a matrix s	pike and matrix spike du	plicate.						
Additional 8260 criteria:	10% of LCS/LCSD	compounds can be	outside of acceptance ci	iteria as	long as	recover	v is 40-1	60%.		

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate MS - Matrix Spike MS Dup - Matrix Spike Duplicate

NC - No Criteria Intf - Interference Phyllis Shiller, Laboratory Director August 18, 2016 Thursday, August 18, 2016

Criteria: None

State: NH

Sample Criteria Exceedences Report

GBN90827 - NEB

RL Analysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Criteria Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

CHAIN OF CUSTODY RECORD Temp or Pg of Park Project Proje
Fax #: F
Email: Info@phoenialabs.com Fax (860) 645-8826 Customer: Address: 777 Ba330n Briter Cole USA Address: 777 Ba330n Briter Cole USA Email: Info@phoenialabs.com Fax (860) 645-8826 Customer: Address: 777 Ba330n Briter Cole USA Report to: Repo
Customer: Address: 77 Bat3m Drive Report to: Report to: Invoice to: Phone #: Fax #: 8to 646 - 7169 Client Sample - Information - Identification Signature Date Matrix Code: DW-Drinking Water SW-Surface Water WW-Waste Water RW-Raw Water SE-Sediment SL-Sludge S-Soil SD-Solid W-Wipe OiL-Oil B-Bulk L-Lquid PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Sa
Address: 77 Batson Drive Report to: Invoice to: Invoice to: Phone #: Fax #: 860 1646 - 7169 Client Sample - Information - Identification Sampler's Signature Date Date Request Matrix Code: DW-Drinking Water SW-Surface Water WW-Waste Water RW-Raw Water SE=Sediment \$L=Sludge S=Soil SD=Solid W-Wipe OIL=Oil B=Bulk L=Liquid PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Sam
Address: 77 B 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Client Sample - Information - Identification Sampler's Signature Date Matrix Code: DW-Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW-Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Matrix Sampled Matrix Sampled Matrix Sample Identification Matrix Sample Sample Matrix Sampled Matrix Sample Sample Matrix Sampled Mat
Client Sample - Information - Identification Sampler's Signature Date Matrix Code: DW-Drinking Water GW-Ground Water SW-Surface Water WW-Waste Water RW-Raw Water SE-Sediment \$L-Sludge S=Soil SD-Solid W-Wipe OIL=Oil B=Bulk L=Liquia PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Code: Date Time Sampled Sampled Matrix Sampled Sampled X X X X X X X X X X X X X X X X X X X
Client Sample - Information - Identification Sampler's Signature Date Date Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid PHOENIX USE ONLY SAMPLE # Customer Sample Matrix Sampled Matrix Sampled Sampled Sampled Sampled X X X X X X X X X X X X X X X X X X X
Sampler's Signature Date Date Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquia PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Sampled Sampled ONLY SAMPLE # Concept Sample Identification Matrix Sampled Sampl
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquia PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Samp
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Samp
RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid PHOENIX USE ONLY SAMPLE # Customer Sample Identification Matrix Sampled Sam
DEN 005 Grab WW 8/11/16 0810 X X 33 1 90878
DEN 005 Grab WW 8/11/16 0810 X X 33 1 90878
DEN 005 Grab WW 8/11/16 0810 X X 33 1 90878
DEN 005 Grab WW 8/11/16 0810 X X 33 1 90878
C36-2893 Piscatagua River D 8/10/16 1815 XXXXX 1111 90829
Relinquished by: Accepted by: Date: Time: RI CT MA Data Format
Date Tolling
Classidential) GW Protection GW-1 PDF
SW Protection GW-2 GIS/Key
Comments, Special Requirements or Regulations:
Turnaround:
☐ 1 Day*
3 Days*
Standard Other Other Other

NEB SALTWATER SPEC 'S ACCLIMATION RECORD

Species: Mendia beryllina	Client: Portimonta - Pease/Peirce Test ID:	Quantity:	*Mortality upon arrival
Source: Agount Indicators	Lot #: SS16 AI (8-10)	Age: 10 days on 8-10-16	* Mortality > 10% - Notify management

Allowable Mortality:

> 5% mortality = Notify management.

Allowable Acclimation: Fish = No more than 50% tank volume water change over a 12 (twelve) hour period.

Mysids = Need to be +/- 2 ppt of test dilution water.

	Water	Chemis	stry						Obse	rvations		
Date	D.O. (mg/L)	p.H. (SU)	Temp. (C) *	Alkal. (mg/L) ml titrant	Sal. (ppt) **	F	eeding	js	Behavioral observations	Do organisms look stressed?	Mortalities	Comments / Treatment type
						AM	NOON	ΡM	A = Normal, B = Erratic mov. C = Dead	Yes / No	# of dead organisms removed from tank	
				200								Accimated to ASW.
8.1016	14.2	7.7	22.7	梦. O mi	25	大小	276	AH	A	No	0	
8-10-16 8-11-16 8-12-16	6.6		22.8	_	25	SJÝ	K	K	A	No	Ö	HODGLASW. HOODGLASW
8-12-16	6.5		23.7)	25	SY	Mg		A	100	0	HOOD GLASLO
										~		

NEW HAMPSHIRE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION PARAMETER LIST ANALYTE LIST NUMBER: 207116-A

NEW ENGLAND BIOASSAY 77 BATSON DRIVE

MANCHESTER CT 06042 (860) 643-9560 Lab ID: 2071

NELAP RECOGNIZED

Analyte C Meth	Code Analyte hod Code: 10213408	Name Method Ref.: EPA 2000.0 EPA/821/R-02/012	Effective Date Revision:	Expiration Date 5TH ED		Category OCT-02	Acer. Typ
3410	PIMEPHALES PI	ROMELAS (FATHEAD MINNOW)	05/27/2016	05/26/2017	N	WET	IN
Meth	hod Code: 10213602	Method Ref.: EPA 2000.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3410	PIMEPHALES PI	ROMELAS (FATHEAD MINNOW)	05/27/2016	05/26/2017	N	WET	IN
Meth	nod Code: 10214401	Method Ref.: EPA 2002.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3315	CERIODAPHNIA	DUBIA (DAPHNID)	05/27/2016	05/26/2017	N	WET	(N
Meth	nod Code: 10214809	Method Ref.: EPA 2002.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3315	CERIODAPHNIA	DUBIA (DAPHNID)	05/27/2016	05/26/2017	N	WET	IN
Meth	nod Code: 10215404	Method Ref.: EPA 2021.0 EPA/821/R-02/012	Revision:	STII ED	Date:	OCT-02	
3350	DAPHNIA MAGI	NA	05/27/2016	05/26/2017	N	WET	ſN
Meth	od Code: 10215608	Method Ref.: EPA 2021.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3355	DAPHNIA PULE	x	05/27/2016	05/26/2017	N	WET	IN
Meth	od Code: 10216407	Method Ref.: EPA 2006.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3380	MENIDIA BERY	LLINA (INLAND SILVERSIDE)	05/27/2016	05/26/2017	N	WET	IN
Meth	od Code: 10216601	Method Ref.: EPA 2004.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3345	CYPRINODON V	ARIEGATUS (SHEEPSHEAD MINNOW)	05/27/2016	05/26/2017	N	WET	ſΝ
Meth	od Code: 10252605	Method Ref.: EPA 1000.0 EPA/821/R-02/013	Revision:	4th ED	Date:	OCT-02	
3410	PIMEPHALES PR	COMELAS (FATHEAD MINNOW)	05/27/2016	05/26/2017	N	WET	IN
Meth	od Code: 10253006	Method Ref.: EPA 1002.0 EPA/821/R-02/013	Revision:	4th ED	Date:	OCT-02	
3315	CERIODAPHNIA	DUBIA (DAPHNID)	05/27/2016	05/26/2017	N	WET	IN
Meth	od Code: 10253404	Method Ref.: EPA 1004.0 EPA/821/R-03/014	Revision:	3rd ED	Date:	OCT-02	
3345	CYPRINODON V	ARIEGATUS (SHEEPSHEAD MINNOW)	05/27/2016	05/26/2017	N	WET	ΙN
Meth	od Code: 10253802	Method Ref.: EPA 1006.0 EPA/821/R-03/014	Revision:	3rd ED	Date:	OCT-02	
3380	MENIDIA BERYI	LLINA (INLAND SILVERSIDE)	05/27/2016	05/26/2017	N	WET	ĺΝ
Meth	od Code: 10254009	Method Ref.: EPA 1007.0 EPA/821/R-03/014	Revision:	3rd ED	Date:	OCT-02	
3395	MYSIDOPSIS BA	HIA (MYSID)	05/27/2016	05/26/2017	N	WET	IN
Meth	od Code: 10264809	Method Ref.: EPA 2000.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3410	PIMEPHALES PR	OMELAS (FATHEAD MINNOW)	05/27/2016	05/26/2017	N	WET	IN
Metho	od Code: NH0114	Method Ref.: EPA 2007.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3395	MYSIDOPSIS BA	HIA (MYSID)	05/27/2016	05/26/2017	N	WET	ſΝ
Metho	od Code: NH0116	Method Ref.: EPA 2002.0 EPA/821/R-02/012	Revision:	5TH ED	Date:	OCT-02	
3315	CERIODAPHNIA	DUBIA (DAPHNID)	05/27/2016	05/26/2017	N	WET	IN

NEW HAMPSHIRE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION PARAMETER LIST ANALYTE LIST NUMBER: 207116-A

NEW ENGLAND BIOASSAY 77 BATSON DRIVE

MANCHESTER CT 06042 (860) 643-9560 Lab ID: 2071

05/27/2016

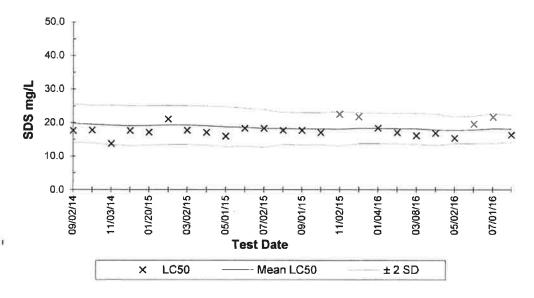
Analyte Code

Analyte Name

Effective Date Expiration Date Matrix Category Accr. Type

Bill Hall

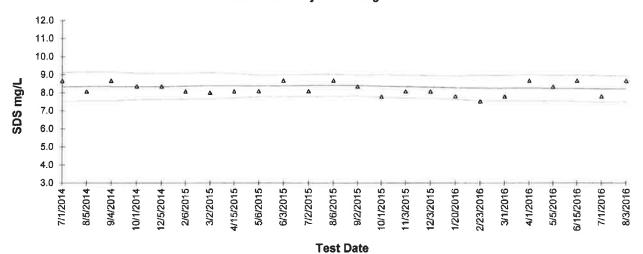
NH ELAP Program Manager Issue Date: 05/27/2016


Matrix Legend: D=Drinking Water; N=Non-Potable Water; SC=Solid and Chemical Materials

Category Legend: MIC=Microbiology; MET=Metals; NMf=Non-Metal Inorganics; PRE-Preparation; VOC=Volatile Organic Compounds; SBN-SVOC-BNA; SHE=SVOC-Herbicides; SNO=SVOC-NOS; SPC=SVOC-PCB; SPE=SVOC-Pesticides; RAD=Radiochemistry; WET=Wet

Accreditation Legend: NE-NELAP; NH=NH State Certification; CE-State Certification; IN=Interim (NELAP); WI=Withdrawn; AP=Applied; RE=Revoked; SU=Suspended

New England Bioassay Reference Toxicant Data: *Mysidopsis bahia* 48-hour LC50


Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: Sept 2014 - Aug 2016

								CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th & 90th%
14-1375	9/2/2014	17.7	19.8	2.9	14.1	25.6	0.14	0.26
14-1573	10/1/2014	17.7	19.5	2.8	13.9	25.1	0.14	0.26
14-1819	11/3/2014	13.8	19.3	3.0	13.4	25.2	0.15	0.26
14-1962	12/1/2014	17.7	19.1	3.0	13.1	25.0	0.16	0.26
15-109	1/20/2015	17.1	19.1	3.0	13.2	25.1	0.15	0.26
15-140	2/2/2015	21.0	19.3	2.9	13.5	25.1	0.15	0.26
15-258	3/2/2015	17.7	19.3	2.9	13.5	25.1	0.15	0.26
15-414	4/1/2015	17.1	19.1	2.9	13.2	24.9	0.15	0.26
15-549	5/1/2015	15.9	18.7	3:0	12.8	24.7	0.16	0.26
15-704	6/1/2015	18.3	18.6	2.9	12.9	24.3	0.15	0.26
15-900	7/2/2015	18.3	18.3	2.8	12.7	23.9	0.15	0.26
15-1082	8/3/2015	17.7	18.3	2.4	13.5	23.1	0.13	0.26
15-1296	9/1/2015	17.7	18.2	2.4	13.4	23.0	0.13	0.26
15-1458	10/1/2015	17.1	18.2	2.4	13.5	23.0	0.13	0.26
15-1687	11/2/2015	22.5	18.1	2.5	13.1	23.2	0.14	0.26
15-1776	12/1/2015	21.8	18,4	2.3	13.8	23.0	0.13	0.26
16-34	1/4/2016	18.4	18.3	2.3	13.7	22.9	0.12	0.26
16-142	2/1/2016	17.1	18.3	2.3	13.7	22.8	0.12	0.26
16-338	3/8/2016	16.1	18.2	2.3	13.6	22.9	0.13	0.26
16-460	4/1/2016	16.9	17.9	2.3	13.2	22.5	0.13	0.26
16-600	5/2/2016	15.4	17.8	2.0	13.7	21.8	0:11	0.26
16-709	6/1/2016	19.6	17.9	2.0	13.8	22.0	0.11	0.26
16-849	7/1/2016	21.7	18.3	2.2	13.8	22.7	0.12	0.26
16-1058	8/1/2016	16.3	18.2	2.0	14.1	22.2	0.11	0.26

New England Bioassay Reference Toxicant Data: Menidia beryllina 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: July 2014 - Aug 2016

Δ	LC50	Mean LC50	+/- 2 STD	
---	------	-----------	-----------	--

								CV National	CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th%	90th%
14-1014	7/1/2014	8.7	8.3	0.4	7.5	9.1	0.05	0.21	0.44
14-1203	8/5/2014	8.1	8.3	0.4	7.6	9.1	0.05	0.21	0.44
14-1395	9/4/2014	8.7	8.3	0.4	7.5	9.1	0.05	0,21	0.44
14-1574	10/1/2014	8.4	8.3	0.4	7.6	9.1	0.04	0.21	0.44
14-1983	12/5/2014	8.4	8.3	0.4	7,6	9.1	0.04	0,21	0.44
15-142	2/6/2015	8.1	8.4	0.4	7.6	9.1	0.04	0.21	0.44
15-143	3/2/2015	8.0	8,4	0.4	7.6	9.1	0.04	0.21	0.44
15-585	4/15/2015	8.1	8.4	0.3	7.7	9.1	0.04	0.21	0.44
15-623	5/6/2015	8.1	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-705	6/3/2015	8.7	8.4	0.3	7.8	9.0	0.04	0.21	0.44
15-901	7/2/2015	8.1	8.4	0.3	7.8	9.0	0.04	0.21	0.44
15-1083	8/6/2015	8.7	8.4	0.3	7.8	9.0	0.04	0.21	0.44
15-1297	9/2/2015	8.4	8.4	0.3	7.8	9.0	0.03	0.21	0.44
15-1539	10/1/2015	7.8	8.4	0.3	7.7	9.0	0.04	0.21	0.44
15-1688	11/3/2015	8.1	8.3	0.3	7.7	9.0	0.04	0.21	0.44
15-18 25	12/3/2015	8.1	8.3	0.3	7.7	8.9	0.04	0.21	0.44
16-108	1/20/2016	7.8	8.3	0.3	7.6	8.9	0.04	0.21	0.44
16-260	2/23/2016	7.5	8.3	0.4	7.6	9.0	0.04	0.21	0.44
16-303	3/1/2016	7.8	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-461	4/1/2016	8.7	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-602	5/5/2016	8.3	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-798	6/15/2016	8.7	8.2	0.4	7.5	9.0	0.04	0.21	0.44
16-850	7/1/2016	7.8	8.2	0.4	7.5	8,9	0.04	0.21	0.44
16-1060	8/3/2016	8.7	8.2	0.4	7.5	8.9	0.04	0.21	0.44